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Abstract 

This study assesses the efficiency of ESG practices and operational performance of Taiwan's food processing 

companies. Using data from 26 listed firms from 2018 to 2023, the research incorporates key measures such as the number 

of employees, employee benefits and wages, operating costs, operating expenses, operating revenue, and ESG scores. The 

Super-SBM (Slack-Based Measure) model and the Malmquist Productivity Index (MPI) are applied to evaluate efficiency 

and productivity changes over the research period. The results reveal significant efficiency gaps among companies and 

identify areas with improvable slacks. The MPI analysis indicates fluctuating productivity, influenced by external shocks like 

the COVID-19 pandemic and the Russia–Ukraine war. Findings suggest that dynamic transformations and robust ESG 

integration are essential for enhancing resilience and competitiveness in the food industry. 
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1. Introduction 

1.1  Research Background 

Food is indispensable in daily life, so it is obvious that the food industry plays a significant role in sustaining human 

life and driving economic growth. With the global population surpassing eight billion people and ever-growing, this sector is 

irreplaceable and will continue to expand in the future. The United Nations Environment Program (UNEP) emphasizes that 

“the demand for food is projected to increase by 60 percent by 2050.” This means that we should be more cautious about the 

actions we take today and take a further look in the future when food security, environment, economy, health, education, 

peace, and human rights will be affected heavily. (United Nations Environment Program [UNEP], 2021, para. 8) 

Table 1: 2023 Food Industry by channel ($ billion) 

Food and Agricultural Exports $5.9 

Food Processing $30 

Retail $9.8 

Food Service $32.6 

Source: Department of Statistics, Taiwan Ministry of Economic Affairs; Ministry of Agriculture; International 

Monetary Fund, as cited in U.S. Department of Agriculture (USDA) Taiwan Food Processing Ingredients Annual Report 

(2024). 

This research will focus on the food processing sector, which accounts for a big proportion of the food industry and 

has an enormous impact on forming consumer food choices, influencing supply chain dynamics, and driving technological 

advancements, followed by various consequences of social, health and environmental problems, climate change and 



ecological balance corruption. 

Statistics of 2022 showed that there are 7,285 operating factories in Taiwan and more than 200,000 employees working 

in the food industry and the number is rising (Department of Statistics, Ministry of Economic Affairs, 2022). Currently, 

Taiwan has 29 listed food companies that contribute significantly to the country's production output. Although the profits 

these companies generate are substantial, we must still closely examine the environmental issues associated with these 

businesses. 

As food production scales up to meet rising demand, the industry’s environmental footprint grows correspondingly. 

Notarnicola et al. (2012) identified several environmental threats associated with rising food demand, including land use 

changes, soil quality degradation, loss of biodiversity, pesticide exposure, and increasing genetically modified foods 

(Notarnicola et al., 2012). These threats can be seen more clearly in Poore & Nemecek (2018) data set (Figure 1), which 

shows how big are the negative impacts of food supply chain on the environment. 

 

Figure 1: The environmental impacts of food and agriculture 

Source: Poore & Nemecek (2018). 

1.2  Research Motivation 

The growing significance of Environmental, Social, and Governance (ESG) practices in the business world, especially 

within the food processing sector, has sparked interest in understanding how these sustainable initiatives influence operational 

performance. In Taiwan＇s food processing industry, integrating ESG factors has become crucial due to increasing regulatory 

pressures, consumer demand for sustainable products, and the need to maintain a competitive edge in the global market. This 

study is motivated by the need to understand whether sustainable business practices can lead to better outcomes in terms of 

productivity and ESG performance.  

Integrating sustainability into core business practices can encourage firms to innovate, optimize resource use, and 

reduce waste and then help firms make measurable improvements in operational efficiency. Consequently, the research will 

contribute to decision-making for food processing businesses aiming to improve productivity while meeting sustainability 

goals.  

1.3  Research Objectives 



The primary objective of this study is to evaluate the operational efficiency of ESG practices in Taiwan’s food 

industry, which include 29 listed companies, utilizing the Super-SBM (Slack-Based Measure) model and the Malmquist 

Productivity Index. These advanced DEA techniques allow for a more comprehensive evaluation of input slacks targeting 

to make actual ESG performance optimization overtime.  

Additionally, the research also seeks to provide strategic recommendations to help food processing companies better 

align operational practices—such as resource allocation, labor structure, and cost management—with ESG principles. By 

doing so, it offers insights into how sustainability initiatives can drive improvements in both operational efficiency and 

ESG outcomes. 

2. Literature Review 

Data Envelopment Analysis (DEA) was optimized from the original productive efficiency measure method, which 

was a single-output/single-input approach developed by Farrell (1957). DEA was first developed by Charnes, Cooper and 

Rhodes (1978), known as CCR model based on constant returns to scale, which assumes that any change in inputs should 

produce a proportionate change in outputs. Later in 1984, Banker, Charnes and Cooper extended it to include variable returns 

to scale and named it  BBC model, which is different from the CCR model where the proportionate increase in outputs does 

not necessarily equal the proportionate increase in inputs.  

In the food industry, numerous studies have employed DEA method to measure efficiency. For instance, the 

researchers apply DEA to evaluates the efficiency of the Mexican food industry (Flegl et al., 2022), the performance of Indian 

meat processing industry (Ali, 2007), the innovation ability of Taiwan's food industry (Dadura & Lee, 2011), R&D 

performance in the Chinese food manufacturing industry to reduce investment risk (Mao et al., 2022) and many other studies.  

When evaluating sustainability practices, ESG is the most comprehensive framework because it addresses existing 

shortcomings by integrating distinct management processes and offering a holistic approach to sustainability reporting and 

decision-making (Whitelock, 2019). ESG factors also encompass undesirable outputs, such as greenhouse gas emissions, 

waste, and pollution, which need to be minimized (Gomes & Lins, 2008). These factors are crucial for assessing the 

environmental impact of the food processing industry. 

Table 2: List of studies using DEA to evaluate food firms’ sustainability efficiency 

 

Despite many researchers being concerned about improving operational efficiency in the food industry, few studies 

integrate all three E, S, G categories into their analyses, some researchers have integrated environmental and social 

dimensions alongside economic factors, as shown in Table 2. 

Egilmez et al. (2014) integrates the results of Economic Input-Output Life Cycle Assessment (EIO-LCA) analysis 

into the DEA model to create a life cycle-based frontier analysis, identifies which criteria significantly contributing to the 

Authors Scope of study
Research 
design

Input Output Dimension

Egilmez et 
al. (2014)  

Supply chain sustainability 
assessment of 33 food 
manufacturing companies in 
US

EIO-LCA (Life 
Cyle 
Assessment) 
and DEA

Carbon footprint
Water withdrawals
Energy footprint
Cropland footprint
Grazing land footprint
Forest land footprint
Fishery land footprint

Supply Chain Decomposition 
Analysis

Environment

Zhang et al. 
(2021) 

Measure efficiency and 
Environmental Sustainability of 
top 10 countries in the global 
agricultural production 

Entropy-DEA 
Model

Labor force
Agricultural arable land area
Agricultural irrigation area
Agricultural machinery
Fertilizer consumption.

Agricultural GDP
CO2 emission (undesirable)

Environment
Social

Vaez-
Ghasemi et 
al. (2022)

Cost efficiency of sustainable 
supply chains of 15 tomato 
paste supply chains within the 
food industry in Iran. 

DEA Model

Raw materials
Staff
Water usage
Inter-products

Green products
CO2 emissions (undesirable)

Environment
Social



supply chain performance of the food manufacturing in the US. Selected environmental categories include carbon footprint, 

water withdrawals, energy footprint, cropland, grazing land, forest land and fishery. 

Zhang et al. (2021) applied the Entropy-DEA Model to evaluate world food production efficiency and sustainability, 

selecting the top 10 countries in agricultural production over the past few years as the 10 DMUs. In the input and output 

selection process, they considered both expected and unexpected factors to capture various aspects of environmental 

efficiency, specifically natural disposability and management disposability and the social factor which is labor force. The 

output indicators included agricultural GDP (expected) and CO2 emissions (unexpected), while the five input indicators 

were labor force, agricultural arable land area, agricultural irrigation area, agricultural machinery, and fertilizer 

consumption. 

Vaez-Ghasemi et al. (2022) used DEA to evaluate the cost efficiency of sustainable supply chains in the food 

industry. They selected six input factors from the Environmental, Economic, and Social categories: raw materials, staff, 

water usage, inter-products, green products, and CO2 emissions to assess sustainability performance in the first stage. 

In summary, most existing research emphasizes environmental and social dimensions, with limited integration of 

governance aspects alongside economic factors. This research expands the scope to include all three ESG dimensions, this 

could offer a more comprehensive evaluation of sustainability practices within the food industry in Taiwan, contributing to 

a deeper understanding of their impact on operational performance. 

3. Methodology 

The research proposes a conjunction use between Super-efficiency model SBM (Slacks-Based Model) and Malmquist 

productivity index to measure ESG operational performance. While Super-SBM evaluates efficiency, identifies benchmark 

and ranking of DMUs, the Malmquist Productivity Index (MPI) is commonly used to measure productivity change over time. 

There are also many studies utilizing this combination to conduct deeper research when measuring productivity of the DMUs 

over the past decade. (Liu et al., 2019; Liu, 2023; Sun et al., 2005; Long et al., 2020; Lan et al., 2022; Shah et al., 2022; Ganji 

& Rassafi, 2019) 

Before applying Super-SBM model and Malmquist DEA, the data must be validated to ensure their suitability, all 

input and output variables must exhibit a positive correlation. The Pearson test will be conducted to verify this condition. 

3.1 Using Pearson Test to Validate Data 

Coefficient r between two variables x and y is given by: 
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సభ
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Where: 

𝑛 is the sample size. 

𝑥 and 𝑦 are individual data points. 

While �̅� ൌ  
ଵ


 ∑ 𝑥


ୀଵ  represents the sample means and analogous for 𝑦ത. 

Interpretation: 

Correlation coefficient 𝑟௫௬ refers closer to +1 suggests a strong positive relationship, closer to -1 indicates a strong negative 

relationship, closer to 0 implies weak linear relationship between the variables. 

Rather than relying solely on correlation tests, DEA emphasizes two key principles: homogeneity and isotonicity. 

Homogeneity requires that all DMUs being evaluated operate under similar conditions. Isotonicity means that as inputs 

(resources) increase, outputs (production) should not decrease, reflecting a positive relationship between inputs and outputs. 



A positive relationship indicates a good linear fit between inputs and outputs for DEA. 

 

 

3.2 Super SBM Model 

DEA model measures the performance of each Decision-Making Unit (DMU), compares DMUs against one another 

and evaluates their efficiency using linear programming instead. DEA model measures the efficiency of each Decision-

Making Unit (DMU). The CCR DEA model is as follows: 

Max Efficiency 𝜃 = 
∑ ௨ೝ௬ೝబ

ೞ
ೝసభ

∑ ௩௫బ

సభ

  (2) 

Subject to:   

∑ 𝑢𝑦
௦
ୀଵ

∑ 𝑣𝑥

ୀଵ

  1 ;         𝑗 ൌ 1, … , 𝑛, 

𝑣, 𝑣  0 ;      𝑟 ൌ 1, … , 𝑠 ;     𝑖 ൌ 1, … , 𝑚. 

Where: 

𝑥: amount of input 𝑖 for DMU 𝑗 

𝑦: amount of output 𝑟 for DMU 𝑗  

𝑢: weight assigned to output 𝑟 

𝑣: weight assigned to input 𝑖 

The constraints ensure that the ratio of output vs. input should not exceed 1 for every DMU. The objective is to obtain 

weights 𝑣  and 𝑢  that maximize the ratio of DMU0, the DMU being evaluated. Due to the constraints, the optimal 

objective value 𝜃 is at most 1, representing the frontier that defines the production possibility boundary. This indicates that 

DEA calculates relative and not absolute efficiency scores. 

The Super Slacks-Based Model (Super SBM) is an extension of the standard SBM model proposed by Tone (2001), 

which is a non-radial DEA model. Unlike radial models, the SBM model optimizes each input and output independently, 

allowing for non-proportional reductions in inputs or increases in outputs. This approach allows the model to account for 

slacks, or excess inputs and output shortfalls, individually for each resource and product associated with each DMU. 

Given n DMUs with inputs and outputs matrices X   ሺ𝑥ሻ  𝑅ൈ  and Y  ሺ𝑦ሻ  𝑅௦ൈ, respectively. 𝜆 is 

a non-negative vector in 𝑅. The vector 𝑠ି 𝑅 and 𝑠ା 𝑅௦ indicate the input excess and output shortfall, respectively.  

The SBM efficiency score ρ for a specific DMU (0) is defined as: 
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subject to    x ൌ Xλ  sି,  

      y ൌ Yλ െ sା,  

     𝜆  0,  𝑠ି  0,  𝑠ା  0 ,  

     0< 𝜌 ≤1 

Let an optimal solution for [SBM] be  𝜌∗; λ∗; sି∗;  𝑠ା∗. Based on this optimal solution, we define a DMU as being 

SBM-efficient as follows:  

A DMUሺx, yሻ is SBM-efficient, if 𝜌∗ ൌ 1. This condition is equivalent to sି∗= 0 and  𝑠ା∗ ൌ 0, i.e., no input 

excesses and no output shortfalls in any optimal solution. 

SBM 𝜌 can be interpreted as ratio of mean input and output mix inefficiencies, the formula for 𝜌 in (1) can be 



transformed into 
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Where:  

ሺ𝑥 െ 𝑠
ିሻ/𝑥 evaluates the relative reduction rate of input 𝑖  

ሺ𝑦  𝑠
ାሻ/ 𝑦 evaluates the relative proportional expansion rate of output 𝑟 

If DMU A dominates DMU B so that x   x and y   y, then 𝜌
∗  𝜌

∗  

3.3 Malmquist Productivity Index 

The Malmquist productivity index (MPI) evaluates the performance of a DMU in two fixed periods.  

Explanation of Terms: 

𝑇𝑆𝐸: Technical Efficiency score. 

𝐼𝐸𝐼: Input Efficiency Index. 

𝑂𝑍: Output levels or efficiency scores at different times and conditions. 

𝐶𝑃: The Catch-Up effect, which assesses efficiency improvement. 

𝐹𝑆: The Frontier Shift effect, which measures shifts in the production frontier. 

The operational efficiency of the DMUs is measured from t to period t+1 as can be seen in equation: 
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Malmquist productivity index (𝑀𝑃௧
௧ାଵ) from period t to t+1 is measured as follows 
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Where 𝑀𝑃௧
௧ାଵ  1 indicates that operational efficiency increased, 𝑀𝑃௧

௧ାଵ ൏ 1 indicates that operational efficiency 

decreased, and 𝑀𝑃௧
௧ାଵ ൌ 1 indicates that there has been no change in operational efficiency. 

4. Results and Discussion 

4.1 Collecting Data and Validating Test 

 

In this study, Decision-Making Units (DMUs) refer to individual food companies in Taiwan.  

To be included as a DMU, a company must meet the following criteria:  

(1) Classification under the food industry sector refers to SASB (Sustainability Accounting Standards Board) for 

industry classification. 

(2) Complete data for the period 2018-2023. 

They are chosen based on data availability from sources such as the Taiwan Economic Journal (TEJ), Market 

Observation Post System (MOPS), and ESG reports. The final sample consists of 26 DMUs. 

The selection of input and output is shown in Table 3. 



 

Table 3: Input-output selection 

Category Code Variable Description Unit Data source 

Inputs I1 Number of employees people MOPS (TWSE Market Observation Post System)
I2 Employee benefits and wages Thousand NTD MOPS (TWSE Market Observation Post System)

I3 Total operating cost Thousand NTD TEJ database 

I4 Total operating expense Thousand NTD TEJ database 

     

Outputs O1 Total operating revenue Thousand NTD TEJ database 

O2 Environment score  TEJ database 

O3 Social score  TEJ database 

O4 Governance score   TEJ database 

 

I1-Number of employees: Chen & Zhu (2003); Katou & Budhwar (2015) stated that the number of employees is a 

critical input factor in the production function, directly influencing organizational productivity. An optimal number of 

employees ensures that workloads are balanced, allowing each employee to perform at their best (Gökşen, Pala, & Ünlü, 

2019). Besides, firms need to reach an optimization point, balancing the number of employees and production outputs to 

maintain cost-effectiveness. 

I2-Employee benefits and wages: employee benefits and wages can be seen as labor cost, since it reflects the value 

of labor relative to other inputs, which have a direct positive impact on work motivation and overall productivity (Kang et 

al., 2016; Primatami & Primadhita, 2020; Ray, 2004). This study uses the total employee benefits and wages, which include 

both salary payments and additional benefits, providing a comprehensive measure of a company's investment in its 

workforce. 

I3-Total operating cost: includes cost of goods sold (COGS) and other direct production-related costs, such as raw 

material procurement, manufacturing processes, and logistics. Managing these costs by improving energy efficiency can 

reduce firms' operating costs resulting in enhancing both ESG performance and financial performance. Other research 

chose total cost of goods sold as an operational input for efficiency evaluation (Mao et al., 2022; Ondersteijn et al., 2006). 

I4-Total operating expense: accounts for indirect costs that support daily business functions but are not directly tied 

to production. This includes administrative expenses, marketing costs, research & development (R&D) expenses, and 

facility maintenance. Some studies utilized operating expense as an input factor to evaluate performance (Bangarwa & Roy, 

2022; Halkos & Tzeremes, 2012). 



 

Figure 2: TESG Framework 

Source: TEJ, 2022. 

O1-Total operating revenue: The higher the operating revenue, the greater the sales volume contributes to the 

company’s financial stability and market competitiveness. Chen & Zhu (2003) identified critical performance measures for 

DEA model, 92.59% of food companies indicated that revenue was the most important factor when evaluating productivity. 

Other studies selected operating revenue as an output factor in DEA model (Cook & Zhu, 2006; Malik et al., 2018; 

Pongpanich, Peng, & Wongchai, 2018; Wong & Wong, 2007). 

O2-Environment score, O3-Social score, O4-Governance: ESG scores serve as outputs employing data from TESG, 

an ESG rating of Taiwan Economic Journal, whose framework is theory-based on international standards such as GRI 

Standards (developed by Global Reporting Initiative) for ESG performance evaluation (Figure 2) and SASB (Sustainability 

Accounting Standards Board) for industry classification. (TEJ, n.d.) 

Pearson test helps identify relationships between input and output, this study tested correlations between inputs which 

are operational indicators and outputs including E, S, G scores and Operating revenue. The results are shown in Table 4.  

Table 4: Input-output Correlations Test Result 

For the two other outputs, O2 (Environment score) and O3 (Social score), the input variables exhibit positive 

  O1-Total  
Operating Revenue

O2-Environment 
Score 

O3-Social  
Score 

O4-Governance 
Score 

I1-Number of 
employees 

Pearson Correlation 0.851** 0.429** 0.336** 0.186* 

Sig. (2-tailed) 0.000 0.000 0.000 0.020 

I2-Total Employee 
Wages and Benefits 

Pearson Correlation 0.954** 0.421** 0.374** 0.125 

Sig. (2-tailed) 0.000 0.000 0.000 0.120 

I3-Total operating 
cost 

Pearson Correlation 0.998** 0.362** 0.359** 0.033 

Sig. (2-tailed) 0.000 0.000 0.000 0.684 

I4-Total operating 
expense 

Pearson Correlation 0.990** 0.345** 0.344** 0.029 

Sig. (2-tailed) 0.000 0.000 0.000 0.720 

**. Correlation is significant at the 0.01 level (2-tailed).    

*. Correlation is significant at the 0.05 level (2-tailed). 

 



correlations at a moderate to weak level, ranging from 0.336 to 0.439, yet remain at a strong significance level at p<0.01. 

This indicates that these 4 operational inputs also contribute to ESG scores within the selected firms. 

Although the Pearson correlation results indicate that the relationship between input factors and O4 (Governance 

Score) is weaker compared to other ESG outputs (ranging from 0.029 to 0.186), only I1 correlation is statistically significant 

at 0.05 p-value level; for other inputs I3 and I4, correlations and the p-values are relatively high (0.684 and 0.720 respectively), 

but they remain positive, which can be considered as a sign of not degrading the output O4. 

While Pearson correlation test captures linear relationships, governance-related impacts often manifest through 

nonlinear dynamics, governance practices lead to development over time with incremental changes followed by later 

economic efficiency (Duit & Galaz, 2008). This highlights that these complex interactions and lagged effects cannot be fully 

captured by the correlation test. Moreover, governance dimension plays a core component of ESG performance, excluding 

O4 could lead to an incomplete assessment of ESG efficiency. Therefore, despite its weak statistical correlation with inputs, 

O4 Governance Score is included as an output in this study, aligning with prior literature emphasizing its importance in 

corporate sustainability and performance evaluation. 

4.2 Super-SBM Model Results 

Note: Throughout the following sections, the DMUs code represents the four-digit company code listed on the Taiwan 

Stock Exchange (TWSE). 

In the study, the panel data was collected from 26 DMUs, using 4 input and 4 output variables over the period from 

2018 to 2023. To align with the structure of the Super-SBM model—which works by analyzing a set of inputs and outputs of 

DMUs without accounting for time-series fluctuations—it was necessary to simplify the dataset. Therefore, the panel data 

was averaged across years for each firm to maintain a balanced demonstration of long-term operational and ESG performance.  

Using yearly data would significantly increase the number of DMUs (e.g., 26 companies x 6 years = 156 DMUs), 

which could complicate the interpretation of efficiency rankings. Moreover, the focus of this study is to evaluate firms' general 

efficiency performance over time, rather than short-term fluctuations. Averaging data helps to neutralize the outcomes caused 

by external shocks—such as Covid-19 or political conflict—as well as provide a stable and representative input for Super-

SBM analysis, keeping the model practical and interpretable. 

The results presented in Table 5 indicate that DMU 13 achieved the highest Super-SBM score of 21.822, followed 

closely by DMU 17 with a score of 20.167. These two companies significantly outperform the rest, with a notable gap before 

DMU 9, which ranks third with a score of 10.228. At the lower end of the range, DMUs 8, 7, and 10, which all score below 

1, recorded the weakest performance, reflecting substantial inefficiencies. 

Table 5: Results of the ranking using Super-SBM model 

DMUs 
DMUs 
code 

Score Super-SBM Rank

13 1229 21.822 1 
17 1234 20.167 2 
9 1219 10.228 3 
1 1201 7.376 4 
22 1737 4.573 5 
24 3054 3.931 6 
15 1232 3.688 7 
23 1796 3.613 8 
14 1231 3.036 9 
18 1235 2.676 10 
21 1702 2.633 11 
16 1233 2.627 12 



26 4207 2.428 13 
5 1215 2.138 14 
3 1210 1.678 15 
19 1236 1.618 16 
11 1225 1.613 17 
4 1213 1.175 18 
25 4205 1.117 19 
12 1227 1.056 20 
20 1264 1.032 21 
2 1203 1.021 22 
6 1216 1 23 
10 1220 0.881 24 
7 1217 0.83 25 
8 1218 0.549 26 

Average 4.019  
Max 21.822  
Min 0.549  
Standard Deviation 5.449  

 

The slacks analysis in Table 6 reveals that many DMUs exhibit noticeable inefficiency in both input and output usage. 

This suggests that companies utilize more resources than necessary to achieve their current levels of output, or that with their 

existing inputs, they still have the potential to reach higher performance levels. The higher-ranking DMUs (DMU 13, DMU 

17 and DMU 1) show larger slacks in operating statistics compared to the lower-ranking DMUs, emphasizing that even 

leading firms are not operating perfectly efficiently. Instead, they outperform primarily because of superior output 

achievements rather than optimal resource utilization.  



Table 6: Results of the Super-SBM model with slacks 

 

In summary, Super-SBM model results reveal that there is a huge gap between top-ranking DMUs and bottom-ranking 

DMUs, highlight that Taiwan’s food industry still has significant room for operational and sustainability improvements. 

Furthermore, the slacks analysis points out that while the upper ranking DMUs outperform other DMUs in the scale, they 

tend to overuse input resources and fall short in fully maximizing output efficiency. On the other hand, to catch up with other 

DMUs in the industry, the lower-ranking DMUs need to execute more dynamic transformations such as investing in 

innovation, upgrading management systems and improving ESG integration, therefore enhancing their positions within the 

industry. 

4.3 Malmquilst Productivity IndexResults 

Catch-up Effect (Efficiency Change) 

As shown in Table 7, the Catch-up effect determines how much DMUs change in relative efficiency year over year, 

spanning from 2018 to 2023. A Catch-up score greater than 1 indicates progress toward the efficiency frontier, while a 

score equal to 1 suggests no change, and a score less than 1 reflects a decline in efficiency. The overall Catch-up average is 

1.1692, revealing that, in general, Taiwan’s food industry improved its efficiency from 2018 to 2023. DMU 13 recorded the 

highest average score of 2.5064, showing significant efficiency improvement, though it experienced a sharp decline in 

2021–2022 with a Catch-up score of only 0.0890. In contrast, DMU 11 posted the lowest average Catch-up score at 0.8298, 

indicating consistent regression, with its worst performance at the beginning of the period (2018–2019), scoring just 

0.1235. 

DMU 6 and DMU 22’s catch-up indices remain stable at 1 in 6 consecutive years, and the same with DMU 1 in 4 

consecutive years from 2019 to 2022. Meanwhile, DMU 4 and DMU 16 show high variability year to year, reflecting 

DMUs
DMUs 
code

Rank
(I)Number of 
employees

(I)Total 
Employee Wages 
and Benefits

(I)Total 
operating cost

(I)Total 
operating 
expense

(O)Total 
operating 
revenue

(O)Environ
-ment Score

(O)Social 
Score

(O)Govern
-ance Score

13 1229 1 1648.766 5898462.456 134291515.9 56364050.17 202158021.8 0 0 10.04

17 1234 2 2825.374 7551890.549 184406719.8 74255628.4 274718138.1 0 3.845 10.053

9 1219 3 1153.795 3003487.201 59539909.31 27848854.43 93423734.61 0 0 0

1 1201 4 1331.57 4979137.705 154899848.1 60477192.64 229818525.9 0 7.278 0

22 1737 5 946.848 1264361.888 12060593.16 4450205.73 16571250.64 27.904 0 0

24 3054 6 42.415 34995.573 1041403.583 34029.757 1223461.739 0 1.36 4.554

15 1232 7 874.687 1106605.12 0 2273964.328 1624385.792 0 0 0

23 1796 8 148.293 459314.104 1275546.593 498453.524 2017245.753 3.479 0 0

14 1231 9 0 616088.69 23129514.23 6012879.762 30843169.4 0.45 6.474 0

18 1235 10 5.833 39221.833 77708.333 45743.5 55836 10.238 2.23 2.25

21 1702 11 217.377 518109.119 8543321.313 0 8815440.974 3.75 2.136 0

16 1233 12 0 859392.066 4849573.227 249317.388 5669510.094 0.876 0.697 0

26 4207 13 283.953 392184.3 5393097.002 392162.501 6165472.803 0 1.8 0

5 1215 14 94.79 0 26515138.56 5721899.158 32928860.96 1.525 0 0

3 1210 15 0 1351259.132 0 19465057.75 23032209.81 9.207 2.807 4.601

19 1236 16 0 42933.225 2052278.663 473676.294 2800561.673 0 12.221 2.435

11 1225 17 332.982 236415.282 0 239064.737 936819.253 1.379 0 10.939

4 1213 18 1.752 41833.63 0 17407.671 126707.464 0 6.983 0

25 4205 19 54.541 0 275822.879 0 0 0 0 12.911

12 1227 20 181.677 0 995069.097 0 0 0 4.159 1.234

20 1264 21 0 0 392094.148 0 0 0 20.546 0

2 1203 22 0 0 349884.672 0 0 0 0 0

6 1216 23 0 0 0 0 0 0 0 0

10 1220 24 48.547 25775.764 0 40461.48 0 0 12.006 0

7 1217 25 182.218 108530.153 0 306186.328 0 0 0 2.288

8 1218 26 384.518 643947.655 0 605922.145 0 0 2.843 1.446



inconsistency or external shocks. 

Table 7: Annual efficiency changes in Catch-up effect from 2018 to 2023 

DMUs DMUs code 2018=>2019 2019=>2020 2020=>2021 2021=>2022 2022=>2023 Average

1 1201 1.4589 1.0000 1.0000 1.0000 1.0000 1.0918 
2 1203 0.9645 1.0152 0.9959 0.9903 1.0067 0.9945 
3 1210 1.0307 1.0233 1.0785 1.0685 0.9612 1.0324 
4 1213 0.4035 0.6095 1.4735 1.2304 1.1710 0.9776 
5 1215 1.0153 0.9785 1.8756 0.9119 1.0043 1.1571 
6 1216 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 
7 1217 0.8672 1.1510 1.0130 1.1995 0.5232 0.9508 
8 1218 0.9635 0.8096 0.9394 0.9119 1.3782 1.0005 
9 1219 3.7559 1.1475 1.6447 0.0973 1.0000 1.5291 
10 1220 1.1601 1.0669 0.8031 0.6761 1.5791 1.0571 
11 1225 0.1235 1.1217 0.8308 0.7921 1.2808 0.8298 
12 1227 1.0095 0.9887 0.9946 0.7086 0.9931 0.9389 
13 1229 1.1435 9.5530 0.7816 0.0890 0.9648 2.5064 
14 1231 0.9942 0.9965 1.9494 0.9811 1.0256 1.1894 
15 1232 3.4583 1.1158 0.8959 0.6881 0.9111 1.4139 
16 1233 0.3569 2.0734 0.6644 0.7591 1.3636 1.0435 
17 1234 1.0000 2.9493 0.4197 0.8079 1.1110 1.2576 
18 1235 1.1251 1.1218 0.5114 2.1961 0.5195 1.0948 
19 1236 2.3345 0.4138 0.9368 0.9581 1.4608 1.2208 
20 1264 0.8937 0.8601 1.0243 1.0057 1.1955 0.9958 
21 1702 1.0122 0.9118 0.9191 0.9924 2.2747 1.2220 
22 1737 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 
23 1796 0.9178 1.0911 0.9944 0.2787 3.7751 1.4114 
24 3054 1.0070 0.7279 3.1261 0.4617 1.4863 1.3618 
25 4205 0.9255 1.0191 1.2898 0.8624 0.8488 0.9891 
26 4207 1.2725 1.0444 1.5374 0.2664 1.5396 1.1321 

 Average 1.1998 1.4150 1.1423 0.8436 1.2452 1.1692 
 Max 3.7559 9.5530 3.1261 2.1961 3.7751 2.5064 
 Min 0.1235 0.4138 0.4197 0.0890 0.5195 0.8298 
 SD 0.8077 1.7247 0.5481 0.4170 0.6250 0.3211 

Frontier-shift Effect (Technology) 

Besides catch-up effect, the frontier-shift effect also must be considered, as catch-up effect is calculated by 

measuring the distances from the respective frontiers. The frontier-shift effect, which is also known as technology change, 

reflects how the best-practice production frontier itself moves over time. A Frontier-shift score greater than 1 implies the 

frontier has advanced, while a score equal to 1 shows no change, and a score below 1 implies regression. 

Table 8 demonstrates the changes in frontier-shift effect among DMUs.  

The average frontier-shift score across all DMUs is 1.2040, showing a general upward shift in the industry's best-

practice frontier, meaning Taiwan’s food industry top performers continuously improved their technological or structural 

advancement.  

Industry leaders such as DMU 13 and DMU 9, with both high catch-up and high frontier-shift scores, are not only 

having high catch-up efficiency but are also likely contributing to technological innovation that shifts the frontier. DMU 9 

has the highest average score at 2.9521, especially during the period of 2019 to 2022, when its annual scores consistently 

ranged from 2.4321 to 5.6465.  



Table 8: Annual efficiency changes in Frontier-shift effect from 2018 to 2023 

DMUs DMUs code 2018=>2019 2019=>2020 2020=>2021 2021=>2022 2022=>2023 Average

1 1201 0.9949 1.1162 1.0000 0.9623 0.9916 1.0130 
2 1203 0.9645 1.0592 1.0052 0.9529 1.1214 1.0207 
3 1210 1.0761 1.0228 1.0281 1.0950 1.0066 1.0457 
4 1213 1.0614 0.9214 0.9416 1.3216 0.7160 0.9924 
5 1215 1.3158 1.7201 0.7733 1.0292 1.0019 1.1681 
6 1216 0.9934 1.0000 1.0000 1.0000 1.0000 0.9987 
7 1217 1.1203 1.0836 1.0066 0.9309 0.9681 1.0219 
8 1218 1.1982 1.1806 0.9611 0.9590 0.9264 1.0451 
9 1219 0.5259 5.6465 2.4321 5.2248 0.9312 2.9521 
10 1220 0.7572 1.2130 1.3016 1.1572 0.9498 1.0758 
11 1225 1.5649 0.7219 0.9427 0.9535 0.8807 1.0128 
12 1227 1.0580 1.0065 0.9986 1.0100 1.2383 1.0623 
13 1229 2.8557 0.7904 0.8128 3.3593 1.0120 1.7660 
14 1231 1.0263 1.0551 1.0089 1.1747 0.9774 1.0485 
15 1232 0.3377 0.9022 1.0400 1.0209 1.2320 0.9066 
16 1233 1.2833 0.9877 1.0033 0.9520 1.1259 1.0705 
17 1234 1.0000 0.1756 2.9544 2.8763 0.8410 1.5694 
18 1235 1.3847 0.7439 1.1121 1.4663 0.9873 1.1389 
19 1236 0.9907 2.0275 0.8158 0.7532 1.3666 1.1908 
20 1264 0.9492 1.0761 0.9186 0.9923 0.9729 0.9818 
21 1702 1.2544 1.0336 0.9825 0.9968 0.6522 0.9839 
22 1737 1.0102 1.0000 0.9722 1.0263 1.0191 1.0056 
23 1796 0.9665 1.3496 1.0552 1.2334 0.6221 1.0453 
24 3054 1.0958 0.9255 0.7572 0.6426 1.7237 1.0290 
25 4205 1.0074 1.1469 0.9743 0.9380 0.9737 1.0080 
26 4207 1.1638 4.0432 1.3049 3.7253 0.5173 2.1509 

 Average 1.1137 1.3442 1.1194 1.4521 0.9906 1.2040 
 Max 2.8557 5.6465 2.9544 5.2248 1.7237 2.9521 
 Min 0.3377 0.1756 0.7572 0.6426 0.5173 0.9066 
 SD 0.4313 1.1043 0.4857 1.0899 0.2392 0.4509 

 

In contrast, some DMUs exhibit high frontier-shift scores but low catch-up scores. For instance, DMU 26 posted a 

strong average frontier-shift score of 2.1509 across 2018–2022, indicating the DMU helped push the frontier forward but it 

wasn’t catching up as fast itself (catch-up score at 1.1321). This may imply that the DMU is innovating the frontier but not 

fully capitalizing on it internally. 

DMUs with low catch-up and low frontier-shift score (DMU 4 and DMU 20), indicating poor relative efficiency 

improvement and little contribution to industry innovation. On the other hand, DMU 15 with high catch-up (1.4139) but 

low frontier-shift scores (0.9066), proving that this DMU is doing well in internal efficiency improvements but may rely on 

existing technologies rather than pioneering new ones. 

 

4.3.3 Malmquilst Productivity Index 

Malmquilst Productivity Index (MPI) is computed as the product of Catch-up and Frontier-shift. MPI greater than 1 

indicates progress in the total factor productivity of the DMUs over the period, while MPI equals 1 indicates no change and 

MPI less than 1 indicates decay in the total factor productivity. 

𝑀𝑃𝐼 ൌ ሺ𝐶𝑎𝑡𝑐ℎ െ 𝑢𝑝ሻ ൈ ሺ𝐹𝑟𝑜𝑛𝑡𝑖𝑒𝑟 െ 𝑠ℎ𝑖𝑓𝑡ሻ 



As shown in Table 9, the analysis for Taiwanese food industry companies from 2018 to 2023 reveals significant 

trends influenced by key external events and environmental, social, and governance (ESG) factors. The average MPI 

strongly fluctuates, indicating that the food industry DMUs experienced many external shocks as well as internal 

adaptability.  

Table 9: Annual changes in Malmquilst Productivity Index from 2018 to 2023 

DMUs DMUs code 2018=>2019 2019=>2020 2020=>2021 2021=>2022 2022=>2023 Average

1 1201 1.4515 1.1162 1.0000 0.9623 0.9916 1.1043 
2 1203 0.9303 1.0753 1.0011 0.9437 1.1289 1.0159 
3 1210 1.1091 1.0466 1.1088 1.1700 0.9675 1.0804 
4 1213 0.4282 0.5616 1.3874 1.6261 0.8384 0.9683 
5 1215 1.3360 1.6832 1.4503 0.9386 1.0062 1.2829 
6 1216 0.9934 1.0000 1.0000 1.0000 1.0000 0.9987 
7 1217 0.9715 1.2473 1.0197 1.1166 0.5065 0.9723 
8 1218 1.1544 0.9559 0.9028 0.8745 1.2768 1.0329 
9 1219 1.9751 6.4792 4.0000 0.5086 0.9312 2.7788 
10 1220 0.8785 1.2941 1.0453 0.7824 1.4998 1.1000 
11 1225 0.1933 0.8097 0.7832 0.7553 1.1280 0.7339 
12 1227 1.0680 0.9952 0.9931 0.7157 1.2298 1.0004 
13 1229 3.2654 7.5510 0.6353 0.2990 0.9764 2.5454 
14 1231 1.0204 1.0514 1.9668 1.1525 1.0024 1.2387 
15 1232 1.1679 1.0067 0.9317 0.7025 1.1225 0.9863 
16 1233 0.4580 2.0480 0.6666 0.7227 1.5353 1.0861 
17 1234 1.0000 0.5179 1.2399 2.3237 0.9343 1.2032 
18 1235 1.5580 0.8345 0.5687 3.2202 0.5129 1.3389 
19 1236 2.3128 0.8390 0.7642 0.7217 1.9963 1.3268 
20 1264 0.8482 0.9256 0.9410 0.9979 1.1631 0.9751 
21 1702 1.2696 0.9424 0.9030 0.9892 1.4835 1.1175 
22 1737 1.0102 1.0000 0.9722 1.0263 1.0191 1.0056 
23 1796 0.8871 1.4725 1.0493 0.3437 2.3484 1.2202 
24 3054 1.1035 0.6737 2.3672 0.2967 2.5620 1.4006 
25 4205 0.9323 1.1688 1.2566 0.8090 0.8265 0.9986 
26 4207 1.4809 4.2225 2.0062 0.9924 0.7964 1.8997 

 Average 1.1847 1.6353 1.2293 0.9997 1.1840 1.2466 
 Max 3.2654 7.5510 4.0000 3.2202 2.5620 2.7788 
 Min 0.1933 0.5179 0.5687 0.2967 0.5065 0.7339 
 SD 0.6087 1.7372 0.7072 0.6096 0.4872 0.4696 

 

Notably, 2020 marks the first phase of COVID-19 pandemic, MPI peaked at 7.5510 and reached its lowest at 0.5179 

during 2019–2020, reflecting extreme divergence in productivity performance among firms. This suggests that while some 

firms adapted swiftly, others were severely disrupted by international logistics delays, raw material and labor shortages, and 

consumer uncertainty. COVID-19 continued affecting the industry more severely in 2021, witnessing a decline in 

productivity across most firms, with the average MPI falling to 1.2293 and many DMUs—such as DMU 13 (from 7.5510 

to 0.6353), DMU 18 (0.5687), DMU 16 (0.6666)—recording drops. In operating terms, the analysis clearly shows that 

packaged and convenience food producers and retail-oriented companies were the least affected or even benefited from the 

COVID-19 pandemic due to changing consumers’ habits. In contrast, fresh and perishable goods producers and specialty 

food companies faced the most challenges. Beverage producers experienced mixed outcomes, depending on their ability to 

shift to retail channels. During the COVID-19 pandemic, companies faced many challenges in integrating ESG practices 



such as higher food waste, increased packing waste, and delays in sustainability projects. In the social dimension, COVID-

19 raised many concerns in food factories about worker health and safety, labor shortages, and stress on workers. In the 

governance dimension, weak planning or risk management firms faced challenges in responding to crises and gaining 

stakeholders’ trust. 

2022 witnesses the lowest average MPI below 1, the highest score at 3.2202 and lowest score at 0.2967, indicating 

overall regression of the industry. This likely reflects the combined pressure of post-COVID recovery fatigue and the 

economic fallout from the Russia–Ukraine war. DMUs such as DMU 13, 23 and 24 saw MPI fall below 0.4, indicating 

sharp productivity regressions, MPI of most of the rest of DMUs during this year also decrease to under 1.  

The Russia-Ukraine war that started in 2022 caused a significant disruption in global supply chains, leading to a 

critical shortage of raw materials and skyrocketing prices especially in commodity and energy, which triggered global 

inflation. This situation led to many challenges that food companies need to confront within environment sector, such as 

increased carbon footprint, energy costs and emissions. Balancing operational costs while keeping prices affordable became 

a formidable task. Furthermore, the crisis revealed governance challenges within some Taiwanese food companies, investor 

pressure increased, raising questions about how companies could sustain sustainable sourcing amid global conflicts.  

By 2022 to 2023, the average MPI showed a moderate recovery, rising to 1.1840. This improvement can be linked to 

companies' strategic adjustments in response to earlier challenges, such as investing in ESG compliance, adopting 

automation, optimizing supply chain management. Additionally, some firms may have benefited from clearer regulations, 

like the Taiwan ESG reporting guidelines, which became more prominent during this period. Companies that had 

previously invested in innovation and structural changes—such as DMU 9, 13—likely began to see the positive effects of 

those efforts, leading to improved efficiency and progress toward the industry frontier. 

To sum up, MPI analysis describes a fluctuated trend over the research period, which witnessed some severe external 

shocks including COVID-19 and Ukraine-Russia war. Despite these challenges, Taiwan’s food companies demonstrated 

remarkable resilience and managed to recover significantly. Moreover, the development of Taiwan's ESG regulations has 

provided a solid foundation for the industry’s sustainable growth, contributing to its long-term stability. 

5. Conclusions and Suggestions 

5.1 Conclusions 

The primary goal of this study was to measure the efficiency of operational performance and ESG practices of 

Taiwan’s food processing companies. With the increasing focus on sustainable development and environmental responsibility, 

it is crucial to understand how integrating ESG principles affects the efficiency of firms in the food sector. This research 

aimed to fill the gap in the existing literature by applying DEA model to evaluate how operational productivity influences 

ESG performance. This study identifies industry leaders and laggards within the sector, providing practical insights for 

companies to enhance their operational efficiency while maintaining strong ESG commitments. offers insights into how 

sustainability initiatives can drive improvements in both operational efficiency and ESG outcomes.  

To achieve these objectives, the study employed the Super-SBM (Slack-Based Measure) model to assess the relative 

efficiency of selected DMUs and the Malmquist Productivity Index (MPI) to track changes in productivity over the period 

from 2018 to 2023. Data on inputs, including the number of employees, employee wages and benefits, total operating cost, 

and total operating expense, were collected alongside outputs including total operating revenue and ESG scores 

(environmental, social, and governance dimensions). Prior to model application, a Pearson correlation test was conducted to 

ensure a positive relationship between inputs and outputs. 

The Super-SBM model results reveal a significant gap between top-ranking and bottom-ranking DMUs, indicating 



that Taiwan’s food industry has considerable potential for efficiency improvement. While higher-ranking DMUs outperform 

others, they often overuse input resources and fail to maximize output efficiency. In contrast, lower-ranking DMUs need to 

implement dynamic changes—such as innovation, management upgrades, and better ESG integration—to enhance their 

operational performance and industry standing. 

The MPI results reflected a fluctuating trend throughout the research period, significantly influenced by external 

factors such as the COVID-19 pandemic and the Russia–Ukraine war. The analysis also indicated a general upward shift in 

the efficiency frontier, suggesting that industry leaders continued to innovate and optimize processes. However, the disparity 

between high-ranking and low-ranking DMUs highlights the need for consistent improvement across the sector.  

This study contributes to the academic discourse by integrating ESG performance into operational efficiency 

evaluation within the food industry context. The application of Super-SBM and MPI offers a thorough understanding of both 

cross-sectional efficiency and intertemporal productivity changes. Practically, the findings provide food companies with 

strategic insights to enhance both operational efficiency and ESG integration, helping them stay competitive while complying 

to sustainability regulations. 

5.2 Suggestions 

There are several potential directions for future research.  

1. One important area is addressing the limitation posed by using averaged panel data in the Super-SBM model. 

While averaging data over multiple years helps simplify the model and capture long-term performance trends, it inevitably 

masks short-term variations and hinders a detailed analysis of how efficiency shifts in response to external events. To 

overcome this limitation, future studies could consider using a dynamic DEA model or conducting year-to-year efficiency 

assessments to capture how companies respond to sudden changes, such as economic disruptions or regulatory updates. 

2. A comparative study across different industries could also help identify sector-specific challenges and best 

practices in ESG integration. Examining how various industries implement sustainability initiatives and manage operational 

efficiency would provide valuable insights into cross-industry differences and shared obstacles. 

3. Additionally, conducting a longitudinal study spanning several decades would enable researchers to explore how 

long-term regulatory changes and evolving ESG standards impact operational performance. Analyzing data over an extended 

period would help distinguish temporary fluctuations from sustained efficiency improvements, offering insights into the long-

term effectiveness of sustainability initiatives. 
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